Direction scientifique
Transfert de connaissances vers l'industrie

Nos Thèses par thème

Toutes les offres [+]

Etude par spectroscopie de photoélectrons haute-énergie d'interfaces critiques enterrées pour technologies avancées d'imageurs

Département des Plateformes Technologiques (LETI)

Laboratoire Analyses de Surfaces et Interfaces

Master 2 Matière Condensée Matériaux

01-10-2020

SL-DRT-20-0750

orenault@cea.fr

Nano-caractérisation avancée (.pdf)

La mise au point de technologies avancées génériques, comme les imageurs ou les mémoires, requiert une compréhension fine du comportement d'interfaces critiques pour le fonctionnement des dispositifs électroniques en jeu. Dans cette perspective, la mise en ?uvre de méthodes de nano-caractérisation en rupture est d'une importance capitale. Dans ce sujet, nous adressons l'application d'une nouvelle technique de photoémission par rayons X durs (HAXPES : HArd X-ray Photoelectron Spectroscopy) utilisant pour la première fois dans ce champ d'étude une source de laboratoire produisant la radiation Ka du Chrome, dans un spectromètre de dernière génération récemment installé sur la Plate-Forme de Nanocaractérisation de Minatec, CEA-Grenoble. L'HAXPES pallie à une limitation importante de la photoémission conventionnelle en augmentant la profondeur sondée, permettant d'accéder de manière non destructive aux interfaces enterrées critiques, situées typiquement à des profondeurs de 20 à 50 nm sous une électrode. La thèse sera organisée en deux volets : un premier volet sera dédié à la caractérisation des états chimiques des interfaces profondes dans les empilements technologiques d'imageurs et autres technologies génériques développées à ST Microelectronics. Un second aspect traitera des aspects électriques et propriétés électroniques de ces interfaces et plus particulièrement des décalages de bandes de valences.

Télécharger l'offre (.zip)

Contrôle de la microstructure de pièce en fabrication additive par génération et détection d'ultrasons par laser

Département Imagerie Simulation pour le Contrôle (LIST)

Laboratoire Instrumentation et Capteurs

master 2 accoustique, physique

01-01-2020

SL-DRT-20-0757

jerome.laurent2@cea.fr

Fabrication additive, nouvelles voies d?économie de matériaux (.pdf)

La fabrication d'additive (FA) métallique par fusion démontre un fort potentiel toujours croissant, et ceux dans des domaines d'applications très variés. Cependant, les systèmes existants présentent des limitations, en particulier sur la possibilité de pouvoir adapter les microstructures, et également de pouvoir détecter des défauts de fusion en ligne [1]. Pour dépasser ces limitations, il est nécessaire de développer de nouvelles stratégies de fabrication qui pourraient permettre d'adapter les conditions de solidification ainsi que des systèmes de contrôle non-destructif (CND) en ligne. Les procédés FA par projection de poudre (DED) ou encore par fusion laser sélective (SLM) utilisent une source d'énergie localement concentrée, laquelle génère de forts gradients thermiques qui conduisent le plus souvent à des microstructures fortement orientées ainsi qu'une rugosité de surface qui rend le contrôle ultrasonore et l'interprétation des mesures plus délicats. Les microstructures produites sont hors équilibre thermodynamique et sont dites à gros-grains ; elles se caractérisent par l'enchevêtrement de grains colonnaires et équiaxes. Ce type de microstructure influence à la fois le comportement mécanique, mais aussi la propagation d'ondes élastiques, puisque les dimensions de ces hétérogénéités sont proches des longueurs d'ondes acoustiques, ce qui a pour effet l'atténuation et la diffusion d'ondes. Un des défis majeurs à relever en fabrication additive consiste à réduire/empêcher la formation de grains colonnaires au cours de la fabrication, car leurs présences au sein de la microstructure sont, le plus défavorable pour les propriétés d'usage. En contrôlant les conditions thermiques pendant la solidification / cristallisation (vitesse de refroidissement, gradients de température) il est a priori possible de favoriser partiellement la formation de grains équiaxes. Il est aussi connu, qu'en insonnifiant un métal en fusion à l'aide d'ultrasons de forte intensité, il est possible de réaliser un « raffinement des grains », ou encore d'engendrer des phénomènes de cavitation, d'écoulements, de mélange, de pulvérisation, de dislocation, de diffusion et de transformation de phase [2]. En effet, lorsqu'un métal en fusion est soumis à une vibration élastique, il est a priori possible de « piloter » la structure de grains solidifiée, i.e. de modifier la direction de croissance et morphologie de la microstructure en cours de solidification. En perturbant ainsi les conditions de la solidification, alors, il est a priori envisageable de favoriser la formation de grains équiaxes, mais aussi de réduire la rugosité de surface, diminuer le nombre de défauts. Ce constat pose l'objectif de cette thèse qui vise à « façonner » des microstructures plus optimales en FA par vibration du bain de fusion et réaliser une inspection en ligne et hors ligne par méthode ultrasons-laser (UL). D'une part, le travail consistera à contrôler l'évolution microstructurale de pièce FA par vibration sans contact du bain de fusion (au CEA-DEN-LISL [3]). Ainsi, on cherchera à modifier les dynamiques du bain de fusion, par exemple perturbant l'effet Marangoni et déstabilisant la croissance dendritique dans la zone de solidification, à l'aide d'ondes élastiques induites par laser modulé ou impulsionnel. L'étude des paramètres de contrôle sera réalisée sur un banc d'essai à développer et instrumenter (caméras rapide, thermique ou Schlieren, et pyromètres) pour engendrer des « microstructures optimisées ». D'autre part, le travail (au CEA-DRT-LIST-LIC) consistera à inspecter en ligne la fabrication de tels échantillons par méthode UL (développement d'un système dédié). Ainsi, on cherchera à générer et détecter des ultrasons par laser dans le bain de fusion, pour suivre, par exemple, l'évolution du front de solidification, l'apparition de keyhole, la pénétration optique, etc. à l'aide des précurseurs acoustiques [4]. Des mesures de caractérisations ultrasonores, dans des conditions de laboratoires, seront également réalisées afin de déterminer les propriétés élastiques par UL en régime thermoélastique [5], que ce soit à l'aide d'ondes de surface ou des résonances ZGV (coefficient de Poisson locale, anisotropie, épaisseur), et autres méthodes CND disponible au LIST, que l'on pourra ensuite comparer aux images EBSD (méthode d'homogénéisation) et coupes métallurgiques. Des simulations par FDTD ou EF de la propagation d'ondes dans ces milieux rugueux et hétérogènes sera aussi envisagé. Références : [1] Zhao et al, Phys. Rev. X, 9, 02052, (2019), Wolff et al, Sci. Rep., 9, 962, (2019), Martin et al., Nat. Com., 10, 1987, (2019), Wei, Mazumder & DebRoy, Sci. Rep., 5, 16446, (2015). [2] G. I. Eskin & D. G. Eskin, ?Ultrasonic melt treatment of light alloy melts', 2nd edn, Boca Raton, FL, CRC Press, (2014), M. C. Flemings, ?Solidification processing', McGraw-HilI press, (1974), T.T. Roehling et al., Acta Materialia 128, 197, (2017), M.J. Matthews et al., Optics Express 25, 11788, (2017). [3] P. Aubry et al., J. Laser Appl., 29(2), (2017). [4] Walter & Telschow, QNDE, 15, (1996), Walter, Telschow & Haun, Proc COM, (1999), Carlson and Johnson, WJ, (1998), He, Wu, Li & Hao, Appl. Phys. Lett., 89, (2006). [5] Clorennec, Prada & Royer, Murray, Appl. Phys. Lett., 89, (2006), Laurent, Royer & Prada, Wave Motion 51(6), (2014), Laurent, Royer, Hussain, Ahmad & Prada, J. Acoust. Soc. Am. 137(6), (2015). Laboratoire d'Ingénierie des Surfaces et Lasers (LISL) Laboratoire Instrumentation et Capteurs (LIC)

Télécharger l'offre (.zip)

Spécification formelle des algorithmes d'apprentissage machine

Département Ingénierie Logiciels et Systèmes (LIST)

Laboratoire pour la Sûreté du Logiciel

Master 2 IA ou methodes formelles

SL-DRT-20-0764

zakaria.chihani@cea.fr

Data intelligence dont Intelligence Artificielle (.pdf)

L'apprentissage machine, en particulier au moyen des réseaux de neurones artificiels, connaît actuellement une expansion impressionnante, pénétrant des domaines allant de l'aide à la conduite à l'assistance juridique ou médicale. Bien que bénéfique en apparence, cette révolution a de quoi inquiéter à mesure qu'elle s'approche d'une application concrète dans les logiciels critiques, car la fragilité de ces techniques d'apprentissage est exposée de plus en plus, notamment face aux perturbations malicieuses. Quelques travaux sont déjà en cours pour adapter les méthodes formelles, utilisées depuis des décennies dans le domaine des logiciels critiques, à ces nouvelles technologies. Cette thèse s'inscrit dans cette dynamique en s'intéressant à un composant primordial de la discipline de vérification et validation de logicielle: les spécifications formelles. En effet, là où les propriétés des logiciels traditionnels peuvent être exprimées de manière à être prouvées par divers outils informatiques, l'une des grandes difficultés des IAs est de spécifier formellement le comportement des systèmes. Ces travaux seront complémentaires à ceux déjà engagés dans notre laboratoire dans le domaine de la vérification des IAs.

Télécharger l'offre (.zip)

Conception et fabrication de composants à base d'alliage de GeSn pour la détection de gaz

Département d'Optronique (LETI)

Laboratoire des Capteurs Optiques

école d'ingénieur ou master en physique fondamentale, physique du solide, optique, optoélectronique ou photonique.

01-10-2020

SL-DRT-20-0776

vincent.reboud@cea.fr

Photonique, imageurs et écrans (.pdf)

Au sein du Département Optique et Photonique, le Laboratoire de Capteur Optique est un leader mondial dans le développement et la fabrication de composants photoniques Silicium (ou CMOS) pour la détection de gaz dans l'infra-rouge. La photonique sur silicium avec des circuits intégrés CMOS offre des capacités en rupture. Ces circuits optiques donnent la possibilité de mesurer l'environnement extérieur tout en permettant une miniaturisation à l'échelle micrométrique. Aucune source lumineuse intégrée CMOS n'existe actuellement malgré les énormes efforts de la communauté depuis plusieurs années. Afin de contourner ces lacunes, l'industrie aujourd'hui développe des solutions de rechanges comprenant le collage de matériaux III-V. De nombreux défis existent pour réaliser l'hybridation hétérogène de lasers III-V afin de fournir des lasers pour la plateforme photonique silicium moyen infra-rouge. D'autres voies à base de Germanium sont en train d'émerger suite aux premières démonstrations de l'effet laser. Ces nouvelles voies pourront mener à la création d'une plateforme photonique Germanium/Silicium compatible CMOS. Dans ce cadre, les équipes du CEA font actuellement partis des quelques leaders mondiaux ayant démontré un effet laser à basse température dans des cavités optiques en GeSn à très forte concentration de Sn. L'enjeu actuel est maintenant d'améliorer la qualité des matériaux, d'induire des contraintes dans ces matériaux pour contrôler leurs diagrammes de bandes afin d'augmenter la plage en température de fonctionnement laser, d'injecter et de confiner efficacement les porteurs dans les hétérostructures. Les composants développés pourraient être dédiés à des applications dans le domaine des capteurs infrarouges et dans le domaine des communications optiques sur puces pour permettre de dépasser les limitations des interconnections métalliques entre, par exemple, processeurs / mémoires.

Télécharger l'offre (.zip)

Fabrication de structures asymétriques 3D appliquée à la mise en forme de lumière visible

Département des Plateformes Technologiques (LETI)

Laboratoire Gravure

Master 2 et/ou Ecole ingénieur sciences des matériaux, optique

01-09-2020

SL-DRT-20-0781

slandis@cea.fr

Matériaux et procédés émergents pour les nanotechnologies et la microélectronique (.pdf)

L'introduction de la réalité augmentée, en particulier sur des systèmes optiques portatifs tels que les lunettes, nécessitent la fabrication de réseaux de diffractions spécifiques permettant de générer des images immersives dans un volume très restreints. Une de leurs spécificités est qu'ils présentent une géométrie dissymétriques (flancs inclinés) les rendant tout particulièrement compliqués à fabriquer avec les procédés standards utilisés pour les micro systèmes et la microélectronique.

Télécharger l'offre (.zip)

Informatique quantique pour applications logistiques et industrielles

Département Ingénierie Logiciels et Systèmes (LIST)

Labo. ingénierie des langages exécutables et optimisation

Master / Computer Science Engineering / Mathematics

01-03-2020

SL-DRT-20-0791

florian.noyrit@cea.fr

Nouveaux paradigmes de calculs, circuits et technologies, dont le quantique (.pdf)

L'informatique quantique semble prometteuse pour résoudre des problèmes algorithmiques que l'informatique classique ne peut résoudre en raison de leur complexité. Cependant, malgré ses promesses et le développement récent des technologies quantiques, les applications industrielles de l'informatique quantique sont jusqu'à présent limitées. Néanmoins, les développements récents de certains algorithmes quantiques (par exemple, Variational Quantum Eigensolver [1], Quantum Approximate Optimization Algorithm [2]), fonctionnant sur des dispositifs existants ou à venir (NISQ - Noisy Intermediate-Scale Quantum) [3], suggèrent de nombreuses opportunités pour des applications à court/moyen terme pour résoudre certains problèmes d'optimisation. La logistique et l'ingénierie industrielle sont des domaines d'application qui proposent des problèmes d'optimisation (ordonnancement, planification, routage?) complexes à résoudre par algorithmique classique. Certaines analyses théoriques et expériences préliminaires [4] ont déjà permis d'identifier des pistes d'applications viables pour les techniques d'informatique quantique. Toutefois, comme il s'agit d'un sujet de recherche vivant, les connaissances sur ces sujets sont dispersées, instables (de nouveaux algorithmes sont proposés fréquemment), parfois spéculatives et pas encore généralisées. Nous proposons donc d'explorer l'application des techniques récentes d'informatique quantique (notamment les algorithmes hybrides et compatibles NISQ) à certains problèmes d'optimisation issus de nos projets industriels. Les objectifs de ce travail de recherche seront les suivants: ? Sélectionner des problèmes d'optimisation pertinents parmi nos projets en cours ou passés dans les domaines de la logistique et de l'ingénierie industrielle. ? Sélectionner des algorithmes quantiques applicables à ces problèmes à partir de l'état de l'art et la pratique et les mettre en ?uvre. ? Adopter ou concevoir un cadre d'analyse comparative qui puisse évoluer avec les progrès dans le domaine de l'optimisation basée sur l'informatique quantique : optimisation en temps de calcul, taille des problèmes, dimension de la machine, ... ? Evaluer la viabilité technique à travers des expériences concrètes. L'évaluation visera notamment à analyser les facteurs d'applicabilité tels que les propriétés de convergence des algorithmes, l'impact de la formulation du problème sur l'efficacité, l'influence de l'architecture matérielle. Plus généralement, l'évaluation doit donner des indications sur les seuils qualitatifs ou quantitatifs (nombre de qubits [5], connectivité, bruit?) qui rendent l'algorithme viable sur les périphériques NISQ (existants ou à venir). ? Proposer et développer des solutions pour rendre viable les algorithmes. Par exemple en adaptant ou étendant les algorithmes, en proposant des réécritures des formulations des problèmes, en mettant en ?uvre un flot de compilation particulier, en adaptant l'architecture de la plateforme d'exécution... Ce travail implique l'accès à des dispositifs d'informatique quantique réels ou émulés pour exécuter les expériences. Des expériences devraient être menées sur diverses plates-formes. Cette thèse se déroulera à Grenoble. [1] A variational eigenvalue solver on a photonic quantum processor, Peruzzo et Al., 2013 [2] A Quantum Approximate Optimization Algorithm, Edward Farhi and Jeffrey Goldstone and Sam Gutmann, 2014 [3] Quantum Computing in the NISQ era and beyond, John Preskill, 2018 [4] Quantum Computing Algorithms for optimised Planning & Scheduling (QCAPS), Dr Roberto Desimone et Al. 2019 [5] Guerreschi, G. G., & Matsuura, A. Y. (2019). QAOA for Max-Cut requires hundreds of qubits for quantum speed-up. Scientific reports, 9(1), 6903. On attend du candidat des connaissances dans un ou plusieurs des domaines suivants : ? Information et calcul quantique ? Optimisation combinatoire ? Algèbre linéaire ? Complexité algorithmique

Télécharger l'offre (.zip)

69 (Page 5 sur 12)
first   previous  3 - 4 - 5 - 6 - 7  next   last
-->

Voir toutes nos offres