Direction scientifique
Transfert de connaissances vers l'industrie

Nos Thèses par thème

Toutes les offres [+]

Etude des mécanismes de dégradation et Fiabilité dynamique des composants GaN sur Si

Département Composants Silicium (LETI)

Laboratoire de Caractérisation et Test Electrique

MASTER2 ou Ecole d'Ingenieur sciences des matériaux, électronique

01-10-2020

SL-DRT-20-0430

william.vandendaele@cea.fr

Matériaux et procédés émergents pour les nanotechnologies et la microélectronique (.pdf)

Les composants de puissance GaN sur Si sont aujourd'hui vus comme la prochaine génération de composants « mass market » pour la conversion d'énergie électrique à haut rendement. Dans ce cadre, le LETI développe sa propre filière GaN sur Si (compatible CMOS) allant du substrat au module final. Ces dispositifs doivent opérer des commutations entre un état de forte tension (~650V) et de fort courant (~20A) à des fréquences élevées (> 100kHz). Les performances statiques et dynamiques étant établies, il est nécessaire de tester la fiabilité de ces composants lors des état de fort stress (OFF et commutation OFF -> ON) ainsi que de comprendre les mécanismes de dégradation sous-jacent afin de stabiliser la technologie et de prétendre à un transfert industriel. Dans la continuité du stage sur le développement des mesures dynamiques sur dispositifs GaN sur Si, le candidat aura en charge : - La finalisation des solutions de mesures ainsi que leurs évolutions notamment pour porter ces tests de dégradation sur prober (détermination de la faisabilité et des limitations) - De l'étude approfondie de la dégradation des performances électriques des transistors (Ron, Vth, Sw?) ou des diodes (Vf, Ron) lors de stress de type AC ou DC afin de déterminer les mécanismes susceptibles de diminuer la fiabilité des composants - La réalisation et la détermination des limites de fonctionnement de la technologie GaN sur Si via des tests de type SSOA (Switching Safe Operating Area) - La compréhension et la localisation des points de défaillance sur les transistors et la diodes GaN sur Si - De proposer des solutions techniques afin d'augmenter la durée de vie des composants auprès du laboratoire LC2E Le candidat devra faire preuve d'esprit d'équipe, de curiosité et d'une grande autonomie

Télécharger l'offre (.zip)

Développement d'un dispositif médical pour la détection simultanée haute sensibilité de biomarqueurs sanguins pour la prise en charge terrain des patients en souffrance cardiaque

Département Microtechnologies pour la Biologie et la Santé (LETI)

Laboratoire Biologie et Architecture Microfluidiques

Ecole d'ingénieur ou master en ingénierie biomédicale

01-09-2020

SL-DRT-20-0451

myriam.cubizolles@cea.fr

Technologies pour la santé et l?environnement, dispositifs médicaux (.pdf)

Les systèmes de santé doivent s'adapter à de nouvelles contraintes sociétales et économiques, et elles s'avèrent un défi majeur à relever dans le cadre de la médecine du futur. Dans les situations d'urgence où la prise de décision du praticien doit être rapide et efficace, les dispositifs d'analyses in vitro au chevet du patient (POC) fournissent une aide précieuse au diagnostic pour améliorer le soin des patients. Le sujet de thèse proposé s'inscrit dans ce contexte, afin d'explorer une nouvelle voie de dosage de biomarqueurs sanguins (protéines, petites molécules), alternative au « gold standard » que sont les immuno-essais de type ELISA, utilisant une immuno-détection couplée à une amplification enzymatique. Nous proposons d'étudier une approche innovante afin de mettre au point un dispositif médical pour la détection très sensible de différents biomarqueurs sanguins représentatifs de pathologies cardiaques. Cette démarche est basée sur l'utilisation de réactifs originaux (aptamères) permettant une amplification biomoléculaire isotherme multiplexée, rapide et haute sensibilité, couplée à l'intégration et l'automatisation du protocole dans des cartouches microfluidiques dédiées. Le dispositif médical développé sera testé sur des échantillons cliniques.

Télécharger l'offre (.zip)

Actionneur MEMS piézoélectrique amplifié hydrauliquement

Département Composants Silicium (LETI)

Labo Composants Micro-actuateurs

Conception mécanique, mécanique des fluides, modélisation, physique, microsystème. Des connaissances en logiciel d'éléments finis (COMSOL, ANSYS ou autre) sont un plus.

01-09-2020

SL-DRT-20-0488

laurent.mollard@cea.fr

Systèmes cyberphysiques - capteurs et actionneurs (.pdf)

Le principal objectif de la recherche sur les micro-actionneurs consiste à développer une architecture permettant l'obtention de grands déplacements et grandes forces, sur une large plage fréquentielle tout en minimisant la consommation électrique. A ce jour, aucune solution ne remplit tous ces critères. En effet les actionneurs hydrauliques ne répondent pas au critère de compacité et de fonctionnement en fréquence mais permettent des forces et des déplacements importants. De même, les actionneurs électromagnétiques répondent à une large gamme fréquentielle avec une force et un déplacement important, mais au prix d'un fort encombrement et d'une consommation importante. Enfin les actionneurs piézo-électriques présentent des déplacements limités, de l'ordre de la dizaine de micromètres, malgré l'atteinte des autres critères. La rupture technologique de la thèse consistera à amplifier hydrauliquement ces déplacements limités, en appliquant de faibles déplacements sur une grande surface, pour déplacer un liquide, et générer, par conservation du volume, des déplacements importants sur une surface mobile plus faible. Le sujet de la thèse consistera donc à développer et à intégrer dans un système MEMS (Micro Electro-Mechanical System), cette brique d'actionneur piézoélectrique amplifiée hydrauliquement (dit système HDAM pour « Hydraulic Displacement Amplification Mechanism ») et à l'optimiser.

Télécharger l'offre (.zip)

Matériaux chalcogénures innovants pour les applications en photonique: impact des procédés d'intégration et des interfaces sur leurs propriétés optiques

Département des Plateformes Technologiques (LETI)

Laboratoire

Matériaux, Optique, Physique du Solide, Electromagnétisme, Chimie

01-10-2020

SL-DRT-20-0549

pierre.noe@cea.fr

Photonique, imageurs et écrans (.pdf)

Les matériaux chalcogénures sont des matériaux de choix pour de nombreuse applications émergentes en microélectronique ou pour les capteurs optiques: photonique dans le MIR, photonique NL, le neuromorphique photonique, capteurs MIR mais également les sélecteurs OTS pour les nouvelles mémoires résistives 3D. L'objectif de cette thèse est d'étudier et de maîtriser l'impact des procédés d'intégration, des matériaux d'encapsulation & des interfaces sur les propriétés optiques de ces matériaux chalcogénures dépôsés en couches minces pour permettre la réalisation future de dispositifs photoniques ultra-performants. Dans ce cadre, l'étudiant réalisera des objets et structures photoniques à base de matériaux chalcogénures à l'aide des outils classiques d'intégration de microélectronique disponibles sur la plateforme 200/300 mm du LETI tels que le dépôt par pulvérisation cathodique, la lithographie optique et électronique, la gravure plasma ... Les interfaces et les structures photoniques obtenues seront tout d'abord caractérisées à l'aide des outils de caractérisation de couches minces (AFM, XPS, FTIR, Raman, XRD, XRR, ellipsométrie/réflectivité en température ...) disponibles sur la plateforme de nano-caractérisation du CEA Grenoble (PFNC). Les propriétés optiques (pertes de propagation, facteur de qualité Q de cavités optiques, non linéarités optiques, déphasage optique, ...) des objets photoniques (guides d'onde, interféromètres, déphaseurs, anneaux résonnants, structures non linéaires ...) seront caractérisés sur les bancs de mesure de photonique intégrée du LETI ainsi qu'à l'Université de Bourgogne à Dijon. Ce travail devrait permettre à l'issue de la thèse de développer des dispositifs photoniques performants et de dépasser l'état de l'art en exploitant au mieux les propriétés optiques uniques de ces nouveaux matériaux. Cela passera par une grande maîtrise de l'élaboration de ces matériaux et de leur intégration avec un contrôle aux échelles nanométriques par technique de lithographie/gravure avec un accent particulier sur la maîtrise de leurs interfaces (impact gravure, encapsulations, passivation états électroniques de surface, intérêt de l'élaboration d'hétérostructures ?).

Télécharger l'offre (.zip)

Sources de temps optomécaniques

Département Composants Silicium (LETI)

Laboratoire Composants Micro-Capteurs

Master 2/ Ecole d'ingénieur généraliste ou physique appliquée ; formation en nanotechnologies, physique des semi-conducteurs, optique ou télécommunications.

01-09-2020

SL-DRT-20-0592

marc.sansaperna@cea.fr

Réseaux de communication, internet des objets, radiofréquences et antennes (.pdf)

Les sources de temps (reference oscillators) sont des composants utilisés dans la grande majorité des circuits électroniques. L'arrivée de nouvelles technologies comme la 5G, les systèmes de conduite autonome dans les voitures ou bien certaines applications aérospatiales nécessitent des performances qui ne sont pas atteignables avec les technologies commercialement disponibles. Le développement de sources de temps constituées de résonateurs micromécaniques (MEMS) en silicium à haute fréquence (1 ? 5 GHz aujourd'hui, plusieurs dizaines de GHz dans le futur) constitue une rupture technologique prometteuse. Cependant, la réalisation de tels dispositifs performants dans la gamme du GHz reste un défi, principalement dû à la difficulté de détecter avec précision des vibrations extrêmement faibles. Il s'agit donc d'utiliser ici une transduction optomécanique sur le même principe que les détecteurs d'ondes gravitationnelles, mais intégrée à l'échelle nanométrique ayant des sensibilités de détection extrêmes. Cette technique maintenant bien maîtrisée au Leti pourra être alliée à l'utilisation de matériaux piezoélectriques pour augmenter le signal disponible : des preuves de principe de ce concept ont été réalisées très récemment pour la recherche fondamentale mais il n'a jamais été appliquée jusqu'ici. Cette technologie semble pourtant le candidat idéal pour réaliser l'objectif de la thèse : l'implémentation d'une source de temps MEMS basée sur cette technologie optomécanique de rupture. La thèse se déroulera au laboratoire de micro-capteurs du CEA-Leti, en collaboration avec le laboratoire de composants radiofréquences. Le Leti est un pionnier dans le domaine de l'optomécanique et des matériaux piezoélectriques intégrés sur puce. Le doctorant travaillera en collaboration avec les équipes du Leti pour concevoir et dessiner le résonateur et son procédé de fabrication, sur la base de modèles analytiques et de simulations éléments finis. Ensuite, elle/il aura la possibilité de fabriquer ses dispositifs en salle blanche, et de les tester dans les laboratoires du Leti, afin de réaliser pour la première fois un tel démonstrateur.

Télécharger l'offre (.zip)

Modèles sûreté/sécurité pour la charactérisation de la sécurité de dispositifs industriels

Département Systèmes (LETI)

Laboratoire Sécurité des Objets et des Systèmes Physiques

Master 2 Cybersecurié

01-10-2020

SL-DRT-20-0594

Cybersécurité : hardware et software (.pdf)

Les systèmes industriels sont souvent utilisés pour surveiller et contrôler un processus physique tel que la production et la distribution d'énergie, le nettoyage de l'eau ou les systèmes de transport. Ils sont souvent simplement appelés systèmes de contrôle de supervision et d'acquisition de données (SCADA). En raison de leur interaction avec le monde réel, la sécurité de ces systèmes est critique et tout incident peut potentiellement nuire aux humains et à l'environnement. Depuis le ver Stuxnet en 2010, ces systèmes font de plus en plus face à des cyberattaques causées par divers intrus, y compris des terroristes ou des gouvernements ennemis[1]. Comme la fréquence de ces attaques augmente, la sécurité des systèmes SCADA devient une priorité pour les organismes gouvernementaux[2]. L'un des principaux axes de recherche en cybersécurité des systèmes industriels porte sur la combinaison des propriétés de sécurité et de sûreté. La sécurité concerne les propriétés applicatives du système (par exemple, les propriétés chimiques d'une usine chimique), tandis que les propriétés de sécurité tiennent compte de la façon dont un intrus peut endommager le système. Comme le montre[3], la combinaison de la sécurité et de la sûreté est un sujet difficile car ces propriétés peuvent être dépendantes, renforçantes, antagonistes ou indépendantes. Comme le montre[4], la combinaison de la sécurité et de la sûreté dans une modélisation commune est un défi, car les deux viennent avec des sources d'explosion combinatoire. De plus, il existe des outils utilisés soit pour les analyses de sécurité, soit pour les analyses de sûreté, mais actuellement aucun outil n'est capable de traiter les deux aspects en même temps. Dans ce contexte, nous proposons une thèse de doctorat autour de la modélisation de systèmes industriels prenant en compte à la fois les propriétés de sécurité du procédé physique et les propriétés de sécurité. En plus de la définition d'un cadre ou d'un langage de modélisation précis, mais analysable automatiquement, de nombreux aspects peuvent faire partie du sujet. Par exemple, des fichiers de configuration d'automates programmables (API) pourraient être générés à partir de ce modèle afin de ne déployer que des programmes préalablement validés. Les vulnérabilités des automates peuvent être étudiées (reverse engineering de firmware, fuzzing de protocole) afin de tester la faisabilité technique des attaques trouvées. Enfin, dans un contexte de certification, les analyses de sécurité sur le modèle pourraient inclure des exigences de normes telles que CEI 62443[5] pour faciliter le processus d'évaluation.

Télécharger l'offre (.zip)

69 (Page 2 sur 12)
first   previous  1 - 2 - 3 - 4 - 5  next   last
-->

Voir toutes nos offres