Direction scientifique
Transfert de connaissances vers l'industrie

Les Post-Docs par thème

Défis technologiques >> Nouveaux paradigmes de calculs, circuits et technologies, dont le quantique
4 proposition(s).

Voir toutes nos offres

Modélisation multi-échelle de l'environnement électromagnétique de bits quantiques

Département Composants Silicium (LETI)

Laboratoire de Simulation et Modélisation

01-03-2021

PsD-DRT-21-0027

helene.jacquinot@cea.fr

Nouveaux paradigmes de calculs, circuits et technologies, dont le quantique (.pdf)

Dans un futur proche, l'informatique quantique est susceptible de conduire à des percées majeures dans le monde du calcul haute performance et des communications cryptées. Parmi les différentes approches basées sur les semi-conducteurs, l'utilisation de bits quantiques de spin sur silicium (qubit) est une approche prometteuse puisqu'elle présente une forte compacité dotée d'un long temps de cohérence, d'une fidélité élevée et d'une rotation rapide du spin [Maurand2016], [Meunier2019]. Un défi majeur actuel dans le cadre d'une matrice de qubits est d'atteindre un contrôle individualisé. Une matrice de qubits forme un système ouvert compact où chaque qubit ne peut être considéré comme isolé car dépendant de l'agencement des autres qubits, de leur réseau d'interconnexions et de l'empilement du back-end-of-line. L'objectif principal du post-doc est de développer plusieurs implémentations pour le contrôle de spin dans les matrices 2D de qubits en utilisant des simulations électromagnétiques (EM) allant de l'échelle nanométrique (qubit unitaire) à l'échelle millimétrique (réseau interconnecté). Le candidat aura pour mission de i) caractériser des structures de test RF (radiofréquence) à température cryogénique en utilisant des équipements de pointe et comparer les résultats obtenus avec des simulations EM spécifiques, ii) évaluer l'efficacité du contrôle du spin et réaliser une optimisation multi-échelle allant du qubit unitaire au réseau de qubits [Niquet2020], iii) intégrer le contrôle RF du spin dans le cadre d'un réseau 2D de qubits utilisant les technologies silicium du CEA-LETI. Le candidat aura de solides bases en RF et en microélectronique ainsi qu'une expérience de recherche en simulation EM, en caractérisation RF et en conception de structures de test. Ces travaux s'effectueront dans le cadre d'un projet de collaboration tripartite dynamique ente le CEA-LETI, le CEA-IRIG et le CNRS-Institut Néel (ERC ?Qucube?).

Télécharger l'offre (.zip)

Simulation et caractérisation électrique d'un cube logique / mémoire dédié au calcul dans la mémoire

Département Composants Silicium (LETI)

Laboratoire Dispositifs Quantiques et Connectivité

thèse en micro / nano-électronique

01-01-2020

PsD-DRT-20-0029

francois.andrieu@cea.fr

Nouveaux paradigmes de calculs, circuits et technologies, dont le quantique (.pdf)

Pour répondre à différents enjeux scientifiques et sociétaux, les circuits intégrés de demain doivent gagner en efficacité énergétique. Or, la majorité de leur énergie est aujourd'hui consommée par les transferts de données entre les blocs mémoire et logique dans des architectures circuit de type Von-Neumann. Une solution émergente et disruptive à ce problème consiste à rendre possible des calculs directement dans la mémoire (« In-Memory-Computing »). Les nouvelles technologies de mémoires résistives non-volatiles et de transistors à nanofils de silicium développées au LETI et intégrées en 3D permettraient de proposer pour la première fois une solution technologique performante et viable à un calcul intensif dans la mémoire. Un projet transverse au leti a commencé sur le sujet: de l'application à l'implémentation technologique, en passant par le logiciel et le circuit. Le but est de créer des nano-fonctionnalités en mixant à très faible échelle des dispositifs logiques et mémoires à très grande densité et très grosses capacités. Un accélérateur circuit de In-Memory-Computing sera conçu et fabriqué au LETI, permettant d'améliorer les performances énergétique d'un facteur 20 par rapport à un circuit Von-Neumann de l'état de l'art. Le poste de post-doctorant proposé s'inscrit dans ce projet et vise à simuler et caractériser un CUBE logique/mémoire dédié au "In-Memory-Computing". Le post-doctorant réalisera des caractérisations électriques de transistors et mémoires pour calibrer des modèles et fera des simulations TCAD et spice pour aider au dimensionnement de la technologie et permettre la conception des circuits.

Télécharger l'offre (.zip)

Conception de circuit digitaux pour le calcul dans les mémoires non-volatiles résistives

Département Composants Silicium (LETI)

Laboratoire Dispositifs Quantiques et Connectivité

Doctorat en micro-électronique

01-02-2021

PsD-DRT-21-0049

francois.andrieu@cea.fr

Nouveaux paradigmes de calculs, circuits et technologies, dont le quantique (.pdf)

Pour répondre à différents enjeux scientifiques et sociétaux, les circuits intégrés de demain doivent gagner en efficacité énergétique. Or, la majorité de leur énergie est aujourd'hui consommée par les transferts de données entre les blocs mémoire et logique dans des architectures circuit de type Von-Neumann. Une solution émergente et disruptive à ce problème consiste à rendre possible des calculs directement dans la mémoire (« In-Memory-Computing »). Les nouvelles technologies de mémoires résistives non-volatiles et de transistors à nanofils de silicium développées au LETI et intégrées en 3D permettraient de proposer pour la première fois une solution technologique performante et viable à un calcul intensif dans la mémoire. Un projet transverse a commencé sur le sujet au Leti: de l'application à l'implémentation technologique, en passant par le logiciel et le circuit. Le but est de créer des nano-fonctionnalités en mixant à très faible échelle des dispositifs logiques et mémoires à très grande densité et très grosses capacités [ArXiv 2012.00061]. Un accélérateur circuit de In-Memory-Computing sera conçu et fabriqué au Leti, permettant d'améliorer les performances énergétique d'un facteur 20 par rapport à un circuit Von-Neumann de l'état de l'art.

Télécharger l'offre (.zip)

Architecture numérique de contrôle de Qubits passant à l'échelle pour l'ordinateur quantique

Département Architectures Conception et Logiciels Embarqués (LIST-LETI)

Laboratoire Intégration Silicium des Architectures Numériques

Doctorat en informatique ou microélectronique

01-01-2021

PsD-DRT-20-0116

eric.guthmuller@cea.fr

Nouveaux paradigmes de calculs, circuits et technologies, dont le quantique (.pdf)

Le passage à l'échelle de l'accélérateur quantique à plusieurs centaines de Qubits impose de revoir l'architecture de contrôle de la matrice en la répartissant entre les parties cryogéniques (sub-K et 4K) et l'extérieur du cryostat à température ambiante. En effet, un certain nombre de contraintes liées à l'utilisation d'un cryostat (thermiques, mécaniques) et aux propriétés des Qubits (nombre, fidélité, topologie) influent sur les choix architecturaux tels que le contrôle des Qubits, le jeu d'instructions, le stockage des mesures, le parallélisme des opérations ou la communication entre les différentes parties de l'accélérateur par exemple. L'objectif de ce post-doctorat est de définir l'architecture hors-cryostat à moyen (100-1000 Qubits) et long terme (plus de 10 000 Qubits) en partant des interfaces logicielles existantes dans les intergiciels de programmation quantique et en prenant en compte les contraintes du réseau de Qubits physiques développé au LETI.

Télécharger l'offre (.zip)

Voir toutes nos offres